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1 Abstract

Machine unlearning is the task of teaching a machine learning model to “forget”
a subset of its training data, known as the forget set, without compromising per-
formance on the rest of the data, known as the retain set. This task has become
increasingly important as privacy concerns around the data used to train ma-
chine learning models have grown. At the same time, the size of such models
makes simply retraining them on the retain set impractical. In order to prevent
the degradation in retain set performance caused by doing approximate unlearn-
ing, many algorithms use ”repair”. Repair steps involve tuning the model on
a subset of the original dataset in order to maintain performance. For reasons
related to data security or licensing, the original data may not always be avail-
able at the time of unlearning. Our Distributional Reconstruction (DiStruction)
method instead works by representing the parameters of the original model as
independent Gaussian distributions. To ensure good performance on the retain
set through the forgetting process, we introduce Kullback–Leibler divergence
penalty between the distributions of the two models’ parameters. This allows
the model to forget the required data without compromising its performance
on the retain set. Our method acts as a plug in replacement for repair and is
compatible with multiple unlearning algorithms. We evaluate it on a wide array
of baselines and see competitive performance with repair based methods.

2 Introduction

Machine unlearning takes an already pre-trained trained machine learning model
and attempting to remove the influence of certain data points used in training,
without compromising the models performance on the remaining training data.
These two subsets of the dataset are known as the forget set and the retain
set. The unlearning task has become relevant as the cost and amount of data
necessary to train machine learning models has grown. Without practical un-
learning approaches, an entire model could be compromised due to having been
trained on copyrighted, toxic, or otherwise unwanted data. Retraining these
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models from scratch without the undesired data is often prohibitively expensive
for large models, hence the need for unlearning algorithms [5].

A naive approach to Machine Unlearning is to simply maximize (rather than
minimize) the pre training objective over the forget set. This approach does
succeed in inducing unlearning on the forget set, however it comes with the
downside of inducing ”catastrophic forgetting”. Catastrophic forgetting is when
performance on the retain set falls off dramatically, IE the model ”over forgets”.
This occurs because the neural network doesn’t put any emphasis on ”remem-
bering” past information. This can be countered by also training the model
to minimize the loss on its original pre-training objective for samples on the
retain set. This obviously requires prior access to the retain set. However this
is not always the case, for example in situations where data is acquired under a
temporary license.

Working in the case where the dataset is discarded after training, we cre-
ate an algorithm that manages to balance performance on the forget and re-
tain set without need for access to the retain set directly. Our method uses a
Bayesian approach to represent parameters as independent Gaussians, and then
our method minimizes the KL divergence between the parameter distributions
our ”forget” model and the original pretrain model. We verify the performance
of our method by testing on several vision-related forgetting tasks and compar-
ing it against baselines.

3 Method

3.1 Preparation Step

The approach of DiStruction is to remove the reliance on the retain set by
representing the parameters of our model as random variables with independent
gaussian distributions. This requires performing a preparation step, on the
model after pre training, but before the training dataset is discarded. Note
that, for this preparation step we do not know what our forget set is.

For each of our original parameters θo, the mean of the parameter distri-
bution µ is simply equivalent to the original parameter. Thus µ := θo. We
compute the standard deviation by minimizing the following. Let L be our
pretraining objective, then:

σ := argmin {Eθ∼N (µ,σ)[Ex,y∼D[L(ψθ(§), †)]]}
Under the assumption that θo was already optimal, this optimization prob-

lem has a trivial solution at σ = 0 for all parameters. In practice, we find an
approximate non trivial solution using Bayesian Gradient Descent (BGD). BGD
has the following update rule:

σt+1 ← σt ·

√
1 +
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4
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[
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]

(1)

This training process typically converges to a loss very close to that of the
original, non-stochastic, model. Let p = N (µ, σ) be the learned parameter
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distribution. We note then that we can recover the original model, before this
preparation step, by simply taking the mean of p, which in practice is stored as
a buffer in the BGD optimizer. This means that our preparation step should
have no effect on model performance at inference time, and does not require
the model to be treated as a Bayesian Neural Network for anything other than
forgetting.

3.2 Forgetting Step

When given a forget set Df and a retain set Dr we are then able to perform
Distruction. Let U be an unlearning objective computed over a given data point.
Such unlearning objectives can take many forms, [4],[1], [3].

For a standard unlearning algorithm with repair we are trying to

argminθ′{(1− λ)E(x,y)∼Df
[U(ψ′

θ(x), y)] + λE(x,y)∼Dr
[L(ψ′

θ(x), y)]}
Where λ is some balancing hyper parameter.

In DiStruction we replace the fixed model parameters with a bayesian ap-
proach, using the standard deviations learned in our preparation step. Let p be
our parameter distribution from the preparation step, and q be the parameter
distribution of the forget model we’re trying to learn.

We replace the repair term with a reverse KL divergence term between the
two parameter distributions, yielding:

argminq{(1− λ)Eθ∼q[E(x,y)∼Df
[U(ψ′

θ(x), y)]] + λ ·KL(q||p)}
With p and q as independent normal distributions, we have that the KL

term is equivalent to:

KL(q||p) = 1

2
{ (µp − µq)

2

σ2
p

+
σ2
q

σ2
p

− 1 + log(
σ2
p

σ2
q

)}

You can split this into two smaller terms. The first terms, depend on the
squared difference between the means of the two parameters. This is scaled by
the inverse of the variance of the parameter for the original model. This makes
it so parameters with a low variance (and thus high importance) in the original
model, tend to stay close to their original means. The remaining terms ensure
that parameter importance does not drift too significantly.

We compute the unlearning objective using the Bayesian Gradient Descent
algorithm, and compute the Kullback-Liebler objective (and its associated pa-
rameter updates) analytically using the means and standard deviations for the
two models.

This gives us a derivative of

∂KL(q||p)
∂µq

=
µp − µq

σ2
p

∂KL(q||p)
∂σq

=
σq
σ2
p

− 1

σq
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4 Results

Model metric
Methods

baseline retrain finetune teacher UNSIR amnesiac SSD DiStruction

ViT
Dr 88.88±0.00 90.07±0.09 80.82±1.37 87.46±0.53 88.47±0.89 87.92±0.89 88.90±0.00 88.86±0.00
Df 94.70±0.00 0±0.00 .46±0.72 4.20±5.24 65.32±9.11 0±0.00 0±0.00 0±0.00
MIA 94.40±0.00 3.23±0.50 19.00±0.09 0.03±0.00 29.13±0.06 1.00±0.01 1.80 ± 0.00 0.00 ± 0.00

Table 1: Results for full class forgetting on CIFAR100 using a Vision Trans-
former on. Dr refers to retain set accuracy. Df refer to forget set accuracy.
MIA refers to membership inference attack accuracy.

Model metric
Methods

baseline retrain finetune teacher UNSIR amnesiac SSD DiStruction

ViT
Dr 95.73±0.00 94.61±0.13 85.70±3.05 93.60±0.29 93.34±0.45 93.47±0.22 95.13±0.00 95.16
Df 94.53±0.00 22.26±8.34 6.25±6.03 3.35±2.89 74.93±10.13 0.85±1.71 5.12±0.00 .08
MIA 80.40±0.00 3.44±0.01 16.04±0.03 0.02±0.00 27.27±0.14 0.78±0.00 5.40±0.00 .02

Table 2: Results for sub-class forgetting on CIFAR20 using a Vision Trans-
former. Dr refers to retain set accuracy. Df refers to forget set accuracy. MIA
refers to membership inference attack accuracy.

Model metric
Methods

baseline retrain finetune teacher amnesiac SSD DiStruction

ViT
Dr 98.88±0.00 98.61±0.08 97.28±0.33 97.58±0.36 97.62±0.35 98.01±1.56 98.353
Df 100.00±0.00 98.80±0.76 97.19±0.98 86.75±3.57 73.49±5.11 98.07±2.35 96.36
MIA 90.76±0.03 91.77±0.02 86.14±0.02 33.53±0.06 10.44±0.05 85.54±0.11 .81

Table 3: Results for random class forgetting on CIFAR10 using a Vision Trans-
former. Dr refers to retain set accuracy. Df refers to forget set accuracy. MIA
refers to membership inference attack accuracy.

We ran exclusively vision-based forgetting experiments using a vision trans-
former model. The 3 tasks we evaluate are full class forgetting on CIFAR10,
subclass forgetting on CIFAR20, and random forgetting on CIFAR100.

It is worth noting that, especially in ??, the resulting Membership Inference
Attack score is extremely low for our method. We believe that this is because
of our entropy-based loss function ’hacking’ this metric, more so than the exact
advantages of our method. Using the Dr and Df metrics, we see that our
method consistently outperforms the other methods, including the state of the
art method SSD, [2].

We also do some investigations into how our method works under the hood.
In figure 1 we see how the KL divergence penalty changes over the course of
training iterations during the forgetting process, where each curve represents a
different λ value. While not shown in the figure, we found empirically model
achieves the unlearning objective very quickly (usually only a handful of iter-
ations), while the KL divergence penalty changes substantially over the course
of the unlearning process. As is evident in the diagram, halting training too
early can cause the model to have a larger KL divergence, and thus a worse
performance on the retain set.
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Figure 1: A Plot of the KL divergence penalty between the original model and
the forgetting model vs training iterations on the full class forgetting task. Each
line represents a different unlearning run with a different λ value.

5 Discussion

We show a promising method for replacing repair in machine unlearning algo-
rithms. Our method shows minimal degredation in performance when compared
to repair, without requiring access to the training dataset during unlearning.
This independence from training data allows previously repair-based machine
unlearning algorithms to be usable on models in cases where the weights have
been distributed externally or where the data is on a temporary license.

Our method also provides empirical backing to the hypothesis that the rep-
resentation of model parameters as independent gaussians learned by the BGD
algorithm is relatively accurate. Many algorithms which require determining
parameter importance focus on measuring curvature through squared gradi-
ents, or through non adaptive monte carlo methods. We believe our results
show a promising new direction for using the standard deviation learned by
BGD to estimate these importances instead. While some methods for deter-
mining parameter importance like Synaptic Intelligence [6], peturb parameters
by a fixed amount and then compute how strong the gradient is in pushing the
parameter back to its original position. The Standard Deviations from BGD
can be thought of as an adaptive version of this; it uses a running estimation
of parameter importance to only perturb important parameters slightly, and
unimportant parameters a lot. This dynamic importance estimations helps us
find accurate importances for each of the parameters, which aids in preserving
retain set performance during the unlearning phase.

Our investigation was limited to the vision domain and to non generative
applications, as is standard for unlearning research. However we see extending
our method in generative applications as an exciting future direction.

6 Conclusion

Many machine unlearning algorithms require access to the training data when
unlearning is performed. We have created a novel method that circumvents
this requirement and performs repair by minimizing the KL divergence between
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the distribution of model parameters trained on the original data and the model
parameters tuned with the unlearning algorithm. We can do this with a minimal
reduction in performance compared to repair methods.
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