
SURF Final Report

Zack Dugue

September 2023

1 Abstract

Skip Connections have been ubiquitous in deep neural networks since their in-
ception in the ResNet architecture (He 2015). However, their relatively sim-
ple structure means that they have limited expressivity when compared to the
standard feed forward approach that preceded it. we propose an architecture
which uses Query Integrated Memory Interfacing Attention (QIMIA) as a mid-
dle ground between fully connected networks, and standard skip connections.
QIMIA is an attention-based approach which uses learned queries to attend to
the outputs of prior layers in order to construct the inputs to each layer. We
evaluate QIMIA architectures against skip connection based architectures on
both vision and language tasks, and find inferior performance when compared
to standard skip connection Architectures.

2 Background

Deep Learning is a field of machine learning which uses Deep Neural Networks
to learn from data how to do certain tasks. Despite the name, for a long time in
Deep Learning research deeper didn’t mean better. In fact, at this time, adding
more layers often degraded performance[3].

The solution to this problem was the Residual Neural Network, AKA “Resnet”
[2]. Rather than having the input of the next block be the output of the last
block, Resnets use something called a “residual stream” to control the flow of in-
formation in the network. Every block’s output is added to this residual stream
(via something called a “skip connection”) as , and every block’s input is the
value of the residual stream at that block (rather than simply the output of the
prior block) (fig figure 2). At the end of the network some final block processes
the value of this residual stream and then generates the output. Resnet archi-
tectures tend to smooth the optimization space of the neural network, allowing
efficient learning of deeper models. Virtually all networks deeper than 3 hidden
layers use a Resnet architecture.

1



Figure 1: A diagram representing the structure of a Residual Neural Network
from [2], modified for clarity.

A drawback to this approach is that the residual stream must contain all the
information relevant to the latter blocks of the neural network. For iterative
tasks, this is not much of an issue. For example, imagine the steps necessary for
multiplying out a factorial. You only need to remember what the running prod-
uct is, and the number remaining left to multiply. But for tasks that involve
parallel steps, like integration by parts, this means that you have to remem-
ber information from prior completed steps that are irrelevant to the current
step, but necessary for a future step. In the case of a human brain, this might
clutter up the short term memory, and in the case of a Resnet, this will clut-
ter up the finite amount of information which can be held in the residual stream.

A solution to this problem would allow would allow the neural network to
effectively ”chunk up the problem”, by analyzing relevant information while
ignoring information produced by other, irrelevant, parallel steps.

3 The Architecture

Skip Connection Architectures have enabled much deeper neural networks than
their generic Feed Forward Counter Parts. But this represents a strong induc-
tive bias, since every block takes as its input the sum of the outputs of all other
blocks, without concern for the extent to which those prior blocks are “relevant”
to the current blocks task. This can cause the overall neural network to be less
expressive. For example in the paper [8], they find much stronger performance
with blocks that include several Attention, Feed Forward, and Mixture of Ex-
pert, based layers chained together into a single block. In this case then, the
Neural Network improves performance by using fewer skip connections than are
in standard architectures.

2



What is needed is a more expressive way to aggregate information from prior
blocks. Our proposed solution here is Query Integrated Memory Interfacing At-
tention (QIMIA). The goal of QIMIA is an architecture that allows any block to
”look up” the outputs of prior blocks using attention [7]. This solves our prob-
lem by creating an accessible ”memory”, such that current block only needs to
take as input the relevant outputs of prior blocks, thus reducing the information
clutter from irrelevant prior steps.

Al = σ(qKT ) ∗V =

∑l−1
i=0 exp(q · ki)vi∑l−1
i=0 exp(q · ki)

(1)

Equation 1: This equation shows represents the input to a block via the attention
mechanism at layer l. Where σ is the softmax operation, q is the learned query
at block l, ki is the output key for block i and vi is the output value for block i.

In this implementation, every block outputs a key and a value, and every
block learns a query. This query is then used to do attention on the outputs
of prior blocks. This allows each block to signal in their output key what they
think their output value will be useful for. Each block also learns a query to
search for the most relevant outputs of prior blocks. The queries are directly
learned, and the keys and values of prior blocks acts as a sort of ”memory”,
hence the name.

4 Background

Deep Learning is a field of machine learning which uses Deep Neural Networks
to learn from data how to do certain tasks. Despite the name, for a long time in
Deep Learning research deeper didn’t mean better. In fact, at this time, adding
more layers often degraded performance[3].

The solution to this problem was the Residual Neural Network, AKA “Resnet”
[2]. Rather than having the input of the next block be the output of the last
block, Resnets use something called a “residual stream” to control the flow of in-
formation in the network. Every block’s output is added to this residual stream
(via something called a “skip connection”) as , and every block’s input is the
value of the residual stream at that block (rather than simply the output of
the prior block) (fig 2). At the end of the network some final block processes
the value of this residual stream and then generates the output. Resnet archi-
tectures tend to smooth the optimization space of the neural network, allowing
efficient learning of deeper models. Virtually all networks deeper than 3 hidden
layers use a Resnet architecture.

3



Figure 2: A diagram representing the structure of a Residual Neural Network
from [2], modified for clarity.

A drawback to this approach is that the residual stream must contain all the
information relevant to the latter blocks of the neural network. For iterative
tasks, this is not much of an issue. For example, imagine the steps necessary for
multiplying out a factorial. You only need to remember what the running prod-
uct is, and the number remaining left to multiply. But for tasks that involve
parallel steps, like integration by parts, this means that you have to remem-
ber information from prior completed steps that are irrelevant to the current
step, but necessary for a future step. In the case of a human brain, this might
clutter up the short term memory, and in the case of a Resnet, this will clut-
ter up the finite amount of information which can be held in the residual stream.

A solution to this problem would allow would allow the neural network to
effectively ”chunk up the problem”, by analyzing relevant information while
ignoring information produced by other, irrelevant, parallel steps.

5 The Architecture

Skip Connection Architectures have enabled much deeper neural networks than
their generic Feed Forward Counter Parts. But this represents a strong induc-
tive bias, since every block takes as its input the sum of the outputs of all other
blocks, without concern for the extent to which those prior blocks are “relevant”
to the current blocks task. This can cause the overall neural network to be less
expressive. For example in the paper [8], they find much stronger performance
with blocks that include several Attention, Feed Forward, and Mixture of Ex-
pert, based layers chained together into a single block. In this case then, the
Neural Network improves performance by using fewer skip connections than are
in standard architectures.

4



What is needed is a more expressive way to aggregate information from prior
blocks. Our proposed solution here is Query Integrated Memory Interfacing At-
tention (QIMIA). The goal of QIMIA is an architecture that allows any block
to ”look up” the outputs of prior blocks using attention. This solves our prob-
lem by creating an accessible ”memory”, such that current block only needs to
take as input the relevant outputs of prior blocks, thus reducing the information
clutter from irrelevant prior steps.

Al = σ(qKT ) ∗V =

∑l−1
i=0 exp(q · ki)vi∑l−1
i=0 exp(q · ki)

(2)

Equation 2: This equation shows represents the input to a block via the attention
mechanism at layer l. Where σ is the softmax operation, q is the learned query
at block l, ki is the output key for block i and vi is the output value for block i.

In this implementation, every block outputs a key and a value, and every
block learns a query. This query is then used to do attention on the outputs
of prior blocks. This allows each block to signal in their output key what they
think their output value will be useful for. Each block also learns a query to
search for the most relevant outputs of prior blocks. The queries are directly
learned, and the keys and values of prior blocks acts as a sort of ”memory”,
hence the name. Note that QIMIA, just like standard attention, can have mul-
tiple heads.

Due to the limitations of the architecture, all QIMIA models are transformer
models. This is because the learned query for the whole blocks attends to each
element (pixel in vision / token in NLP) of an input individually. For example,
in a vision model, a learned QUERY for a block deep in the network, might
attend strongly to the output of block 2, for one pixel, but for a neighboring
pixel, it strongly attends to the output of block 3. Because of this, there aren’t
any obvious ways to ”reduce” the number of keys / values from one block to
another. So any methods which require down-sampling the outputs of a blocks,
is incompatible with the QIMIA framework. This makes Transformers a natural
fit.
Also, unless otherwise specified, all queries are initialized to be equal to the
zero vector. This means that the model initializes in an identical state to a
skip connection based architecture. This seems to greatly stabilize training over
using randomly initialized queries.
Further implementation details can be found in the appendix.

5



Figure 3: A diagram of block l performing Query Integrated Memory
Interfacing Attention, processing that input into a key and value, and then
storing that key value pair in the set of key value pairs that serves as ”memory”.

6



Figure 4: A graph of how the accuracy curves changed with the size of the key
dimension.

6 Results

Out tests in the Vision Domain were primarily using the CIFAR10 dataset [cite
CIFAR10 paper]. Initial experiments found that the QIMIA based model un-
derperformed the skip connection based baseline. The QIMIA model introduces
many hyper parameters however, and the effects of tuning these hyper param-
eters were explored to see if the gap could be closed.

In this first experiment we explored the difference in learning curves when
changing the dimensionality of the keys/queries used in the QIMIA architec-
ture (while holding the number of QIMIA Heads fixed). We found that larger
key dimensionality resulted in a less accurate model overall (figure 4). This is
counter intuitive given that larger key dimensional means more parameters over-
all. The ”Entropy” metric is a metric which computes the average ”entropy” of
the QIMIA attention weight matrices of the model. Larger entropy means that
blocks are attending equally to prior blocks, and are thus acting similarly to
standard skip connection architectures. We find that models with smaller key
dimensional tend to have lower entropy metrics (figure ??, and are thus learning
to imitate a skip connection (since the input is essentially an equally weighted
sum of all prior outputs).

We then explored how altering the learning rate effects performance. We
found that, lower learning rates did correlate with better performance (figure
6). But due to the zero initialization of queries, the low learning rate caused
queries to be very small in magnitude, and so in practice the QIMIA model
simply approximated a skip connection based architecture (figure 7).

We considered the possibility that learning rate warmup might be required
for training. Early Transformer models used learning rate warmup in order to
prevent the model from essentially over fitting on data points early in training
and learning parameters that make learning unstable for future steps [1]. We
found that learning rate warmup did not benefit performance at all. We also
tried ”Path Dropout” which is a regularization strategy sometimes used in very

7



Figure 5: A graph of how the entropy of the QIMIA model changed with the
size of the key dimension.

Figure 6: A graph of how the validation accuracy of the QIMIA model changed
with the learning rate.

Figure 7: A graph of how the norm of the query of the QIMIA model changed
with the learning rate as the model trained.

8



large transformer models that drops entire blocks from the models feed forward
[6]. We implemented this by applying dropout to the attention weight matrix
of the input to each block. The hope was that this would stabilize training by
preventing any block from learning to depend too strongly on the output of one
particular prior block. However we only found reduced performance when using
this dropout.
Finally we explored some broader architectural changes including normalizing
the keys to the unit vector, batch normalizing the values, and replacing the dot
product attention of QIMIA with L2 attention. With Key Normalization, we
normalize the keys such that each key has L2 norm of 1. This has the effect of
stabilizing the gradient signals passing through the keys. We also test using a
batch norm on the output of all the values (and getting rid of the Layer norm
at the beginning of each block) [4]. Finally we test using L2 attention instead
of Dot Product Attention. L2 attention was tested because, unlike dot product
attention, L2 attention is Lipchitz Continuous, and so should have more stable
gradients [5]. Unfortunately none of these architectural changes meaningfully
improved the QIMIA model performance.
Tests were also performed in the language domain on the Wikitext103 dataset,
but it was found that the standard skip connection based architecture outper-
formed the QIMIA architecture.

7 Conclusion

In general the pattern that we found was that QIMIA architectures appeared
to be unstable during training. QIMIA architectures only performed well in
situations where it was essentially imitating skip connection based architecutre.
While the QIMIA model is much more expressive, it seems that much like the
feed forward networks of old, that degree of expression makes it tend to bounce
around the optimization space explored by Stochastic Gradient Descent. My
exploration of potential hyper parameters was not exhaustive, and it may be
possible that there is some combination of these hyper parameters (or archi-
tectural changes) that would cause QIMIA to perform on par (or better) than
skip connection based architectures, and this remains an area to be explored in
future work.

9



8 References

References

[1] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard
Socher. A closer look at deep learning heuristics: Learning rate restarts,
warmup and distillation, 2018.

[2] Kaiming He and Jian Sun. Convolutional neural networks at constrained
time cost. CoRR, abs/1412.1710, 2014.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[4] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift, 2015.

[5] Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz con-
stant of self-attention, 2021.

[6] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet:
Ultra-deep neural networks without residuals, 2017.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. CoRR, abs/1706.03762, 2017.

[8] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Heng-
shu Zhu, Hui Xiong, and Qing He. A comprehensive survey on transfer
learning, 2019.

10



9 Acknowledgements

I want to thank my PI and Mentor, Dr. Georgia Gkioxari. I would also like to
thank the California Institute of Technology’s Student and Faculty Programs
office for hosting SURF and giving me the opportunity to research here!

11



Figure 8: A graph of a feed forward QIMIA block. Note the two seperate paths
for the keys and the values after the first linear layer.

10 Appendix

All QIMIA models tested used layer-normalization without an affine transform,
and lacked the standard ”Head Mixing Layer” that most attention modules
typically contain. All of the CIFAR models were trained as vision transformers.
With an embed dim of 256, a depth of 10, a path size of 8, and a hidden layer
dimension for the feed forward layers of 1024. For the purposes of QIMIA the
input embedding and the learned positional encoding are considered separate
key value pairs, and thus later layers can attend to them individually.
Feed Forward blocks include a single shared Linear Layer that projects the
input into the feed forward hidden dimension (figure 8). Then there are two
splitting ”paths”. The Key Path and the Value Path. The Value path has a
Parametric-ReLU activation, and then a linear layer which projects the hidden
feed forward units back down into the embedding dimension. The key similarly
has a Parametric-ReLU and a linear projection layer from the feed forward
hidden dimension to the key dimension. Attention Blocks are similarly defined,
but distinct from the standard transformer setup, they also contain Parametric-
ReLU activations (figure 9).

12



Figure 9: A graph of a feed forward QIMIA block. Note the two seperate paths
for the keys and the values after the Multihead Attention.

13


