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 Abstract: 
 Streaming perception is a type of computer vision used to label the location and class of objects in a 
 stream of video in real time. Current streaming perception architectures rely on rapid inference that can be 
 completed before the next frame of video is available. This means that, for each frame, a great deal of 
 latent feature extraction occurs, but these latent features are essentially thrown away when the next frame 
 is considered. We propose a novel architecture which utilizes a neural ODE to maintain a continuous state 
 between frames, thus allowing features from prior frames to impact the inference of the current frame. By 
 training and testing this architecture on the ArgoverseHD streaming dataset, we hope to show improved 
 performance on streaming perception benchmarks. We hope that this architecture will allow for more 
 parameter-light, more accurate streaming perception architectures for applications such as autonomous 
 driving. 

 Background: 
 Streaming Perception is a computer vision application that involves labeling the location and class of 
 objects in a stream of images in real time. The locations of the object are described via “bounding boxes” 
 which are rectangles given by coordinates on the image itself intended to contain the object. The class of 
 the object is usually labeled according to the streaming perception task. For example, in self-driving 
 applications “car, traffic light, pedestrian” could be the classes of objects. All objects which are not a car, 
 traffic light, or pedestrian, are labeled as “background.” 

 Diagram 1 – An image augmented by the bounding boxes  and labels of a detector model. 

 The objects in a scene must be bounded and labeled in real time, which, for a camera with 30 fps video, is 
 about 30 frames per second. How quickly the inference occurs is relevant to the quality of the detection, 
 because in deployment tasks objects will move in the frame. So a 100% accurate inference made with two 
 seconds of latency, may not be as useful as an 80% accurate inference made with one second of latency. 

 Faster RCNN: 

 Current state of the art streaming detection models emphasize rapid inference, focusing on trying to 
 output an accurate inference before the next frame appears. The model we will be working with most is 



 known as Faster RCNN. Faster RCNN takes an image as input, and extracts “features” from that image 
 using a convolutional neural net backbone. Then it uses those features as part of a “two stage detector”. 
 One stage of the detector called the “Region Proposal Network”  identifies “Regions of Interest.” Through 
 a method called “ROI-Pooling” the second stage of detector, the ROI-Head, evaluates the extracted 
 features in these regions of interest to determine the bounding box of the object contained and the class of 
 the object. Most of our work will focus on the Convolutional Neural Net Backbone of the Faster RCNN. 

 A neural ODE is a type of  machine learning algorithm  which learns “dynamics” of an evolving state. I 
 would refer to the description and notation used in [cite1] and [cite2]. 

 Standard implementations of modern streaming perception models treat each new frame as though it were 
 brand new, even though each frame is nearly identical to the frame before it. This means that much of the 
 feature extraction between each frame is redundant, and in practice this leads to higher latency for models 
 and thus lower accuracy. 

 Our approach: 

 Consider some layer of the CNN backbone. We represent the activations of said layer with the 
 vector  . Now I reference the notation from cite1  and cite2. Where, for us, said equations η
 instead look like this: 
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 the object bounding boxes and class labels are unlikely to have changed much between frames. 

 They are also likely to have changed in relatively predictable ways. For example, a bounding box around 
 a car driving left, is likely to shift left in the next frame. 
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 The Architecture: 
 The Convnet backbone we use in our network looks like this: 



 When a stream of video is passed to our model, the first frame is passed through some “initialization 
 backbone”. This initialization backbone is used to determine the initial states of the ODE blocks. Then the 
 remaining frames of video are passed through the main body of the detector. The downsample blocks are 
 similar to what would be found in a normal Resnet. The ODE blocks integrate the dynamics as described 
 previously. After the integration, the state of the ODE-layer at each frame is passed to the next layer. This 
 architecture of down sample layers combined with ODE layers is loosely based off of the ContinuousNet 
 architecture. 

 To initialize the states of each layer we use a Resnet50 that’s been pre-trained on a detection task. This 
 Resnet 50 is then frozen for the training of the larger network. In deployment this initialization would be 
 used to get a good starting state for the network, and then the ODE would be integrated for each frame. 
 Where the state of any given ODE block would be the result of the prior frame’s integration. 

 The dynamics used in each ODE block were modeled after the “Bottle Neck Dynamics” of large CNNs 
 like Resnet 50. In order to mix information from the current state and input, a 3x3 convolution between 
 bottlenecked features of both states is used. 

 In the Diagram 



 Currently the design of these dynamics are to use static weights. In the [cite ContinuosNets] 
 paper, the Authors use time varying dynamics, which allow them to increase their effective parameter 
 count. We also attempt something similar. 

 Results: 

 8-step, 4-step, and 2-step, refer to the number of evaluations used to integrate the dynamics for each 
 ODE-block. Euler and RK4 refer to the integration methods used. 

 Approach  Computation Time Per Frame 
 Resnet 50  0.0088s 
 ODE-8-Step-Euler  0.0102s 
 ODE-4-Step-Euler  0.0077s 
 ODE-2-Step-Euler  0.0059s 
 ODE-4-Step-Rk4  0.0174s 

 Table 1 - As can be seen here, only certain integration parameters necessarily achieve a faster computational speed than a 
 standard Resnet 50. 

 8-step-loss 

 Light Blue – Classifier Loss 
 Pink – Box Regression Loss 
 Yellow – RPN Classification Loss 
 Purple – RPN Box Regression Loss 

 4 step loss 

 Yellow – Classifier Loss 
 Green – Box Regression Loss 
 Purple – RPN Classification Loss 
 Orange – RPN Box Regression Loss 



 2-step loss: 

 Green – Classifier Loss 
 Gray – Box Regression Loss 
 Orange – RPN Classification Loss 
 Blue – RPN Box Regression Loss 



 RK-4 loss: 

 Blue – Classifier Loss 
 Pink – Box Regression Loss 
 Orange – RPN Classification Loss 
 Purple – RPN Box Regression Loss 

 Resnet 50 Control: 

 Orange – Classifier Loss 
 Gray – Box Regression Loss 
 Blue – RPN Classification Loss 
 Pink – RPN Box Regression Loss 



 Time Varying (4 step Euler) 

 Purple – Classifier Loss 
 Yellow – Box Regression Loss 
 Orange – RPN Classification Loss 
 Green  – RPN Box Regression Loss 

 As you can see, the Neural ODE backbones perform significantly worse (with about twice the loss) when 
 compared to the Resnet 50 control. There is little variation in the actual losses or the convergence rate 
 when changing the precision of the Neural ODE integration or the method of integration. This implies 
 that the use of an ODE at all might be unnecessary, and that simple Independent Recurrence [cite IND 
 RNN] may be enough. Our implementation of Time Varying Dynamics caused the loss to diverge for 
 reasons not yet known. The fact that the 2-step Euler and 4-step Euler are faster than the baseline, shows 
 the fundamental promise of faster (and thus more accurate in deployment) detection in streaming 
 perception using ODE Feature Recurrence. 

 Methods: 

 The Nero Optimizer was used to optimize in all cases. Each model was trained for 4 epochs, with a 
 learning rate of .025 which halved each epoch. Training was done on the Caltech HPC. 

 Discussion: 

 There are still further avenues for research in the realm of applying Neural ODE’s for recurrence in 
 streaming detection. For one thing, Faster RCNN is no longer state of the art. Currently the state of the art 
 in image detection is called YOLO. This is a single stage detector, rather than the two stage detector of 
 Faster RCNN. YOLO also uses a probability map of object classes that seems like it would fit rather well 
 with the slow smooth variation of a Neural ODE. Another idea we had was to try to implement Neural 
 ODE recurrence in the later parts of that Faster RCNN detector, specifically the ROI-Head. Another 
 useful avenue of research could be to move beyond the use of ODEs entirely and focus on an 
 independently recurrent approach [cite independently recurrent Neural Network]. 



 Conclusion: 

 The Use of Neural ODEs for latent feature recurrence in streaming detection has a strong theoretical 
 grounding in the fact that much of the information extracted from one frame to the next is redundant. 
 Neural ODEs seem apt to take advantage of this proximity in state space to allow recurrence of these 
 features, thus reducing the overall size and increasing the speed of the CNN backbone. In practice our 
 results show that the proposed Neural ODE backbone detectors have significantly worse accuracy than 
 the control, but make inferences at faster speeds. Further research is needed in this area to determine 
 whether the accuracy can be improved and Neural ODEs can be applied to streaming perception. 
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